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Abstract--The effect of hydrodynamic coupling of adjacent phases on the axisymmetric drainage 
of thin films is examined using a prototype model of coalescence. For long times, pressure forces in 
the film dominate flow in all three regions, and finally all move effectively as one, whereas for short 
times, profiles are sharp and initial flow differences in the three regions can dominate pressure 
effects. For intermediate times, temporal evolution of velocity profiles depends in a complicated 
way on the kinematic viscosity ratio and the parameter R = (pA#A/pB/IJB) r'2, as well as on initial 
conditions and pressure gradient. Generally speaking, the initial flows have less of an effect on 
overall drainage time than the presence of induced circulation in adjacent phases. Analytical 
solutions are plotted for a range of systems and representative initial ~onditions and pressure 
gradients. In a subsequent article, film-thinning equations are solved using this information. 

1. I N T R O D U C T I O N  

The approach of a drop to another drop or a deformable bulk interface is determined by 
the rate of drainage of the intervening fluid film (Hartland 1970). When the film becomes 
thin enough, it ruptures, culminating the final stage of the overall coalescence process. For 
the gravitational approach of two drops of different size or a drop to a bulk interface, the 
overall shape of the draining film is spherical (Princen 1963). For two equisized drops, 
however, the film is planar (Scheele & Leng 1971), and in any event is often axisymmetric 
and approximately uniform in thickness (Robinson & Hartland 1971). Moreover, for the 
case of equisized drops approaching vertically, there is no hydrostatic pressure gradient 
within the film. These are the basic ingredients of the model analyzed in Section 2. 

In earlier studies of drainage of thin films, the dimensions and physical properties of the 
film and its bounding interfaces (Robinsoh & Hartland 1972; Hartland 1972) were usually 
included, as well as the radial component of the dynamic pressure gradient within the film; 
the last may result from other than gravitational forces pressing upon the film (Wood & 
Hartland 1972; Hartland & Wood 1973). If the interfaces are not immobilized by surface 
active agent(s), however, the fluid motion in the contiguous phases will be coupled with the 
motion within the film--and therefore ultimately with one another, as well. As a conse- 
quence of hydrodynamic coupling, then, the drainage of the film must also depend upon 
the physical properties and the circulation patterns within the drop and its homophase. 
Previous models have considered the film to be uniform in thickness and either fully 
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mobile ("free", in conventional hydrodynamic usage) or completely immobile (Reynolds 
1886; Hartland 1967; Riolo, Reed & Hartland 1973); the former approximate to gas-liquid 
interfaces, the latter to solid surfaces, liquid interfaces saturated with surface active agent, 
or extremely viscous contiguous phases. 

The models have also been refined to allow for small deformations of immobile or free 
interfaces due to the pressure gradient within the film, the pressure difference across the 
interface being balanced by the normal component of the surface stress arising from local 
curvature and interfacial tension (Hartland 1969). No model has as yet considered the effect 
of motion within the adjacent phases, however, although there is ample experimental 
evidence of the effect in clean systems (Hartland 1969). An attempt has been made (Murdoch 
& Leng 1971) to explain experiments on colliding drops (Scheel & Leng 1971) in terms of a 
model in which circulation within the drops was felt to be important; similar experiments 
had already been carried out on colliding drops (Allan & Mason 1962; McKay & Mason 
1964). Certainly drop circulation will set in during the unconstrained approach of a clean 
drop to an interface which will both enhance, and be enhanced by, the outward drainage 
of the intervening film, but this can be countered by inertial effects resulting from impact 
and subsequent deformation and flattening of the drop, with the result that circulation can 
even be reversed, thereby dragging liquid back into the film and leading to dimpling (Hart- 
land 1970, t969). Despite the considerable effect of these inertial forces and resultant initial 
circulation patterns within adjacent phases, however, the pressure gradient eventually 
restores normal, that is outward, drainage with associated outward circulation within 
adjacent phases. The role of such hydrodynamic coupling of film motion and circulation 
in adjacent phases is considered in this paper, with the concomitant effect on film-thinning 
taken up in a subsequent one. 

2. F O R M U L A T I O N  A N D  S O L U T I O N  O F  T H E  H Y D R O D Y N A M I C  E Q U A T I O N S  

The basic simplifying assumptions in the earlier drainage models, aside from the 
boundary conditions, are those familiar in the hydrodynamic theory of lubrication, namely 
the quasi-static assumption and the essential one-dimensionality of flow. These ingredients 
are retained in this model, the former in somewhat generalized form. The pressure field 
varies radially but not vertically, thereby only driving the fluid radially, the orthogonal 
direction having negligible motion. The location of the interfaces changes only slowly, so 
that the "instantaneous" solutions of the hydrodynamic equations are obtained as though 
the interfaces were stationary, the form which the quasi-static assumption takes for this 
problem. 

At an uncontaminated liquid-liquid interface, the basic conditions to be satisfied are a 
balance of pressure forces by surface tension, a balance of viscous stresses, and continuity 
of velocity. 

The drainage of the film often proceeds with an essentially constant thickness, making the 
surface tension boundary condition redundant in so far as the hydrodynamics are con- 
cerned; conversely, when appreciable deformation of the interface takes place which would 
bring surface tension into play, the basic drainage assumptions soon thereafter become 
invalid. Consequently, that boundary condition is considered no further. 
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The weight, or buoyancy, of the drop acting in distributed form over the interface 
delineating the film squeezes the fluid out of the film, and the film flow may or may not 
begin from a state of rest. The motion in the film is thus generally time-dependent, and this 
is true even for the simpler models for which the velocity fields are implicitly dependent 
upon the time (see Riolo, Reed & Hartland (1973) for an analysis of explicit transients 
within the context of Reynolds' model). For real systems, the motion in the film acts through 
the velocity and momentum f lux continuity conditions to set the liquid in the drop and its 
homophase in motion. The motion in those two regions is thus explicitly time-dependent, 
as is necessarily also that in the draining film. It is the time-dependent coupling of  the motion 

in the three regions which makes the hydrodynamic problem nontrivial despite its linearity. 

Under the stated conditions the equations describing the fluid motion are (see figure 1 
for a schematic): 

((~2 1 t~) A k 1 ~ 1 ~ :  
. . . . .  +-~A ~r (PA/PA)  -- ' [ I ]  v" v a -  

( 02 l a i r .  
a-¢ vB atl ' - -  o, B = B , ,  B 2 [2, 3] 

where v and /~ are the kinematic and dynamic viscosities and p is the density; 
k = -(1/pA)(Op/c~r ) is the effective/pressure gradient; p is the local pressure; vr is the radial 
velocity; z is the vertical distance and r is the radial distance in film. 

Subject to the following boundary conditions: 

A B~ OvA 0V'n~ [4a, b] at z = 0 '  v, = v ,  , # a ~ - 2  = ~ t 8  a~' 

A ~, a vA ave, ' 
at z = 6" v. = v. , #A OZ-Z = #~ OZ 

B t  1 as z--* ~ "  Vr --* Vo, 

B2 2 
a s  z - - - ,  - -  ~ " V r ~ V o . 

[5a, b] 

[6] 

[7] 

Superscript A refers to the fluid in the film, while B, and B 2 denote the drop and its homo- 
phase. 

Because the motion is time dependent, initial conditions must also be specified, but 
because of the difficulty in knowing the precise conditions at the onset of validity of the 
drainage equations, and because of the complexity of considering quite general initial flow 
fields, we suppose that at time zero the velocity fields are as follows: 

A at t = 0 :  v, = u o ,  

v~' = ~ ,  [8] 

B2 2 
V r -= V o , 
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with the initial condit ions being at most  functions of r and slowly varying functions of z 

1 and 2 which should decrease at great distances from the interfaces, v o Vo are the initial radial 
velocities in phases B~ and B 2. 

If t7 a = 5a{v~a}, 

and [¢= Y{--~rr(Pa/PA)} 

denote the Laplace transforms of the several dependent  variables, then the ancillary 
equations are 

d ) 1 
d?z ~ - d  aa-- -t£+Uol, 

V A 

~ Do 

- q uB,  = vB 

- q uB2 = vB 

[9] 

[lO] 

Ell] 

VAqA ~D] [(R 

V2o [ R + l / e q , , o  ' 

v~q~t D [ 

+ 1)e Q+~ - (R - l)e Q ~ 

+ 1)e q'''~ -- (R - 1)e -qAa - 2] 

v,,q~l D I ~ - ~ '  

+ 1)e qaa - -  ( R  --  1)e  -qaa  --  2J 

- 2eq- a] 

[15] 

[16] 

C 4 = 

C 3 = C 6 : 0 

+ u o l R  + 11 
c, = 2vAq 2 I ~ D - - -  ] ~(R 

IR+l I 
+ v .q - - -~BIW ] + 

k + uo[R - 11 
ca = 2v,,qy, 1 ~ I  ErR 

+ v.q~l O ] +  

Corresponding solutions are 

- {k + u°l [e qA~ + e -qA= - 2], [12] blA : c l eqAz  -}- c2e--qAz I 2VAqZA] 

4 " [e -qB=-  1], [13] HBt : .  C3 eqBz + c4e  - q s z  vBq2 

V~o 
" [e q ' z -  1] [14] laB2 : C5 eqBz + C6 e - q B z  VBQ2 

in which q = (s/v) 1/2 and s is the Laplace- t ransform variable. The constants c l -c6  as 
determined from the t ransformed boundary  condit ions after some algebra are 



THE EFFECT OF HYDRODYNAMIC COUPLING ON THE AX1SYMMETRIC DRAINAGE OF THIN FILMS 415 

VBq----~SI-~] [(R + 1)e e+~ -- (R - 1)e e-~] 

v~o V2o 12R~ B~ 
+ VBq~ + ~ I - - D - )  eq ' [17] 

+ .qr_ / 
c~ = VAd ID/[ ( r  + 1)e ~ - ( r  - 1)e - ~  - 23 

+ VBq21 D I + vBq~tD] [(R + 1)e qA~ + ( r  - 1)e-qA~], [18] 

in which 6 is the film thickness and 
D = (R + 1)2d A6 - (R - l)2e -qA6. [19] 

In these formulae,  R #Aqa (#AI(VBI 1/2 (PA#All/2 
- -  -- = - -  represents the relation between 

#BqB U@I ~ VAI ~PM@/ 
m o m e n t u m  t ranspor t  at the bounda ry  between the two phases (as measured  by the dynamic  
viscosity ratio) and m o m e n t u m  t ranspor t  in the interior of the two phases  (as measured  by 

the square root  of the k inemat ic  viscosity ratio). The  remaining pa ramete r s  are 

Q+ = qB + qA, Q-  = qB -- qA. 

Consequent ly ,  the t ransformed velocities are given, upon assuming the pressure to vary 

at most  slowly and after some re-ar rangement ,  by 

/ + .o//±l UA = - - t  VAq 2 ]l D ][(R + 1)e qa`a-=, + ( R -  l)e -qa(a-=, 

+.ol I V'o ll l l  
+ (n + 1)e qaz + (R - 1)e -qaz] + i v--~q~- ] + lvBqan ]tD ] [(R + 1)e q*= 

I q ll 1)eqa,'-z, 1)e-qA,a-=,], + (R  - 1)e -~Az] + iv~q2]lDI [(R + + (R - [203 

" Ir'+u°llg-I 1)e q~''a-='+q*' (R l)e q ' ' ' -= ' -qAa 2e q~'a-='] 
u=, = I VAq 2 ] l  D] [ ( R  + - - - 

vl° IRI 1)e qB''-z'+qa' (R 1)e qB''-z'-qa'] 
vnq 21 D] [(R + - - 

1 v 2 12R\ , 

V o _ _ f _ _ / e q , , {  a-~, [21] 
+ vBq2 + 2 vBq, I D ] 

UBE~ I]c+U°I(D VAq2 ] [(R + 1)e qBz+qa'~ - (R - 1)e qBz-qAa - 2e qs=] 

Vo 1 /2R~ v~ v 2 / R I  1)eq,,z+q. , 1)e,,,=_qA,]" 
+ .7~-_21--/e qBz + [(R + - (R - [22] 

VBq§~ O I vaq 2 vBq210] 

J.M.F.,  Vol. 1, No. 3 - - C  
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These expressions only apparently lack inverses, for D contains exponentials which 
insure their existence. Because of their complexity, however, [203-[22] cannot be im- 
mediately inverted, but can be manipulated into known forms using standard methods 
which are applied below (Carslaw & Jaeger 1959). Because of the resultant series solutions, 
it is worthwhile commenting on the more readily interpreted transformed solutions. 

The result for the transformed film velocity provides for an equivalent influence by 
the flows in the other two regions and for a symmetric velocity field provided vo ~ = v 2. 
The way in which initial flow in Bz influences motion in BI is seen from [21] and [22] to 
be the same as the way in which initial flow in B 1 influences motion in B 2 . The entire flow 
field in B1-A-B  2 is symmetric if v I = v 2. The initial flow in the film also enters the expres- 
sions for drop and homophase in a symmetrical manner. Finally, the role of the pressure 
gradient in driving the film flow is seen to be propagated by hydrodynamic coupling into an 
explicit role in the flow fields in the remaining two phases. 

Although not crucial to our development, the assumption that there is virtually no 
temporal variation of the pressure field during drainage does simplify matters considerably. 
More importantly, there is appreciable indirect experimental support for this contention. 
Although direct measurements of pressures and velocities within such thin films have not 
been made, the deformation of a fluid interface is an especially sensitive indicator of a change 
in pressure during drainage. Often interfa.cial deformation is small or nonexistent; and when 
dimpling is appreciable, it serves to relieve build-up of pressure. Also qualitative observa- 
tions of velocity fields in the neighboring phases indicate general agreement with our 
subsequent predictions (Section 4). Perhaps the most significant support is provided by the 
film-thinning curves calculated on the basis of the same assumption in the following article: 
the theoretical predictions are not only qualitatively correct, they are quantitatively accurate. 

The solutions to the ancillary equations yield, upon inversion, the velocity fields in the 
drop (B1) and its homophase (B2) and the film of continuous phase (A) remaining between 
them. Already a bit complicated, their inversion yields still more complicated expressions: 

4kt 
A 

- ~ ( R  + v, (R+l)2 = o . .  - ~  1)t e r l c [2~At ;~J+(R- -1 ) t  eric L ~.4~)~, ~ j 

u o ~ [ R - l \ 2 " (  [ - 2 n f + z ]  [ - (2n+2)6-  ] 
(R + 1)=.__Zo 11R + 1)errcL  ' J + (n - 1)erfc[ 2~/~ Z. 

J 

,, ~ [(2n + 1)6 - ,, ~ F(2n + 1)6 + z l )  +(R+uerxc L 2~a~/~--~]+(R-,,enc[ -2~A-/f/S J~+Uo 

• V o ~ = o t ~ + , l ) '  °° 'R l\2"fl(R_l_,, ~[-(2n+l)6-z] ~[-(2n+l)O+l} + (R+ it ,er,c[ + (R -  1)er,c[ 

V o2 o~ ( R _ 1 ) 2 ,  { [ - 2 n 6 + z ]  ~[-(2n+2)f-zl}, [23] 
+ (R + l)2n_-~o ~ (R + 1)erfcL2~A~?2J + (R-1)e r ic  k ~ v ~ / 5 -  
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v, (R+I)2 ~=o(~) x (R+l)i2erfc {z-6)+(vdv'O'/22n61 

R oo [ R -  1 ~2n( F 
+Uo(R  + 1)2 ~0[~--i- / I(R + 1)erfcL!=- + 

-(R-1)erfc I (Z- -6)+(Vn/VA) l /2 (2n+ erfcI(Z-f)+(vB/va)l/Z(2n+2(vBt) 1/2 1)61t 

1 R ~ R - I  2" 

-(R-1)erfcf(Z-f)+(vn/va)'/2(2n+2)6]} 
2(vnt)x/2 + Vlo 

2 2R ~ erfcF - 6) + (vs/va)l/2(2n + 1)6 [24] 
+ Vo (R + 1) ~ . = o /  + 1] k 2(vBt) 1/z ' 

R ~ (R + 1)i2erfc .-z vn, 2 = 4kt  (R + 1)~.=0 R - ~  } ~  ] 

R ~o I R  - l\2nf 1)erfc f -  z + (vB/va)X/22n61 

+1' ill 
R - 1 - z  + (vB/va)l/2(2n + 1)6 

+ v°~ (R + 1) ~- - - -5  _ R ~ i  erfc . 2(v.t)l/2 

2 R oo 2, + (vn/vA)l/22n61 
- v° (R + 1)~. ~ (R + 1)erfc ~ j 

- (R-1)e r fc [  - z +  (v"/va)'/2(2n + 2 ) 6 ] }  + Vo . [253, 

The binomial expansion of the denominator D permitted the solutions to be obtained in 
the form of complementary error functions (erfc) and their repeated integrals (iZerfc), 
which are tabulated functions (Abramowitz & Stegun 1968) arising in similar heat transfer 
problems (Carslaw & Jaeger 1959). This form for the solution also permits physical interpre- 
tation. The term kt represents a local momentum source in the film which can vary radially 
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since k = k(r). The first series can be interpreted crudely as a superposition of individual 
modes of momentum transfer from the film due to instantaneous values of momentum 
sources within the film. The constant term u o denotes the "ground-state" of the film, from 
which departures are measured as indicated by the remaining terms in the solution. The 
other Uo-term, the second series in the solution, corresponds to diffusive interaction of the 
film with its two contiguous phases, with the first pair of terms representing interaction 
with phase B 1, the second pair interaction with phase B2. This becomes more transparent 

and : if the Uo, Vo vo terms are grouped as 

(l,l ° - -  U I ]  ac, IR - l ~ 2 n (  Z] ,, ~ [-(2n + 1)b + 

/32 o: 2 ,  (u°-~))z ~=o(R~l ) {(R [-2nb+z7 1 , e f V i 2 n + 2 ) , -  ~ +  - + l ) e r f c [ 2 ~ A t ~ J + ( R  - 'rcL z]} 
B, and B2 reflect the fact that the pressure gradient drives the The first terms (series) in v r v~ 

motion within the film; the film motion, in turn, drives the motion within the contiguous 
phases. The remaining terms in both correspond to momentum diffusion into or out of the 
drop from the film and across the film into or out of its homophase, and conversely. By 

Bt rearranging, for instance, the non-pressure terms in v~ we get: 

(Uo- VXo) (R + 1)2 ~ol ~+'1) 1 (R + 1)erfc (z-6)+(vdvA)l/22n6-2(vnt)m/2 

- ( R - 1  )erfc[(Z--b)+(v"/vA)~/2(2n+2)63} 2(v~t)i/2 

2R ~ [R-ll2"erfc[(Z--b)+(vn/vA)l/2(2n+ 1)h 1 
+ (v2 - u°)(R + l) ~ . = o / R  + 1] k 2(vBt) 1/e ' 

yielding directly the desired interpretation, first, of momentum diffused into the drop from 
the film and second, of momentum diffused through the film from the homophase. 

The same complexity that makes interpretation difficult makes it desirable to consider 
limiting forms of the three solutions. These asymptotic forms serve as touchstones when 
considering the full solutions, but in some cases they are more readily obtained through 
the subsidiary solutions. 

The equations and solutions may be made dimensionless in a natural manner, and 
although the figures are labelled with dimensionless coordinates, [23]-[25] will not be 
rewritten. 

3. S O M E  A S Y M P T O T I C  F O R M S  O F  T H E  A N A L Y T I C A L  S O L U T I O N  

For large positive values of (z - 3) and large negative values of z, one recovers the 
undisturbed initial drop and homophase motions, respectively, because the transient fields 
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developing in the neighborhood of the film cannot penetrate that deeply into the interior 
in a finite time. Thus, 

1 lim v~ t = Vo, 
(z - 6 ) ~  oo 

B2 2 lim v, = v o, 
( z ~ - ~ )  

as is clear from [21] and [22]. 
Pronounced dimpling of a film may imply that flow within the film is or has been radially 

inward, and because of hydrodynamic coupling this should also be true in the contiguous 
phases. Although the solutions to the drainage equations do not remain valid for pronounced 
dimpling, its onset can be sought in the exact solutions. An estimate of the effect can be 
obtained from the drop and homophase motions in the thin-film approximation, in which 
case one obtains, for instance, 

lira v~ VA~7 ~ t e r t c t ~  J 

1 2 Z - - t ~  

~- erfc 

~ L ~  vol + R~--Vo V~A/2 --~ (nt)l/2 +vo 1 . [26] 

The several terms in the asymptotic solution for a very thin film can be viewed as contri- 
butions of individual physical effects which are superposed to give the total flow. 

The first terms, quantifying the role of the pressure gradient in the film on the flow in the 
drop in the thin-film approximation, corresponds to a constant flux of momentum into the 
drop from the film. The second term can be regarded as the contribution of momentum 
released by the film at the initial instant and proportional to the initial flow within the film. 

1 2 the third term represents the diffusive contribution to Depending upon whether v o ~ vo, 
drop flow from an initially faster homophase motion or reduction in drop momentum 
because momentum diffuses from it through the film and into an initially slower homophase. 
The fourth term is easier to interpret in view of the interpretation of the second and by 
grouping certain terms as below, [27~: if motion in the film is initially greater than a property 
weighted average of the drop and homophase motions, a proportional amount of momen- 
tum released at the film at time zero would subsequently diffuse into the drop at the rate 
prescribed by the rewritten fourth terms and conversely, according to 

lim l-- '/2 
6-~0 

z - 6  ( v l  2 Z - -  t~ 1 

2 
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I - ( z  - ,~)2 I 

v° +/ R2 / [27] 

The third term is simply a quantification of the "ground-state" of motion within the film, 
the remaining terms representing departures from that initial motion and resultant 
momentum diffusion. 

The corresponding terms for the homophase motion in the thin-film approximation 
represent individual effects which are interpreted in precisely the same manner, the super- 
position of which gives the total homophase motion as measured from its initial motion 
due to pressure-driven flow in the film, due to interaction across the film (mome/atum 
exchange), and due to interaction with the film itself (via the property-weighted average), 
respectively: 

( z )  ,2, 
~-~o ~v--al ~ + - - - ~ - ~ e r c  ~ +Vo 

+{Uo 1F[Ra+llvlo (R2~ll ]~ (3,1exp(~z~) 

B2 and 2 naturally, are interchanged in v~' and v, . The roles of vo Vo, 
It is intuitively expected that initial conditions will be more dominant, the shorter the 

time. If the asymptotic forms 

i 2 erfc x e- x2 
4(/'~)1/2X 3 

and 

erfc x (7~)1/2X 

are introduced into the exact solution, then a term-by-term comparison of the k and the 
(u o - Vo~), respectively (Uo - Vo2), terms can be made. The first term is typical, in which case 
the comparison comes down to the pressure-term differing by the dimensionless factor 
(T/~ 2) from the (Uo - Vo 2) term. For sufficiently short times, then, the pressure effect will be 
less than the effect of the initial conditions. 

Moreover, a similar analysis of the velocity expressions in B1 and B 2 shows that for short 
times the effect of the initial conditions in the adjacent phases differs by the factor R from 
corresponding terms in the film. Consequently, for large R the initial departure from the 
initial velocity in the film is magnified by the factor R in the neighboring phase and con- 
versely. These calculations also show that the smaller the pressure gradient, the more 
prominent the effect is. 

Of perhaps more significance than the above spatially asymptotic solutions and the 
temporally asymptotic solution for short times is the long-time solution, for the time at 
which the drainage equations become valid approximations and the conditions prevailing 



THE EFFECT OF HYDRODYNAMIC COUPLING ON THE AXISYMMETRIC DRAINAGE OF THIN FILMS 421 

at that time are presently ill defined. Unfortunately, the long-time asymptote must be 
interpreted with reservations, as well, for the longer drainage proceeds the more likely it 
becomes that one or another of the assumptions underlying the drainage equations 
comes into question. Nevertheless, the lengthy drainage times relative to all other time 
scales in the overall coalescence process--an effect the more pronounced in viscous 
systems--invite consideration of the long-time asymptotes, which are given by: 

R 1 2 R 
a k ¢~f 1/2 v° + v° t -  1/2 

lim,~ovr = ~ + - - + 2  U° (7~YA) 1/2 2 

(7~YATll2RF(R 1 6 Iv I + v2~ zv~° 2 - 

R 1 2 R 6 
B, _ k ~)f I /2  v°  + 1)° - 1/2 

,--,~lim v, - ~ "]- - -  - F - 2  /A° (7~YA) 1/2 2 t 

_1 F!R 2 -  1)Vo ~ + ( R 2 +  1)Ij2o[YBI1/2~ vl--1)2O(z__(~)lt_l/2 [30] 

2n t A# 2 2 ' 

i 2 R 6 R Vo + Vo 
lim,~oo v,n~ = k ~ ~t112 + - - 2  + U° (7~VA) 1/2 2 t - 1/2 

1 F(R2 -I - 1)Vo 1 -t-(R 2 -  1)v 2/v, / l /2~ vo 1 -Vo 2 ] 
(7~vB) L 2R tvA# 2 ~ Z t - 1 1 2 .  [31] 

In all the long-time asymptotes there is a simple time dependence, dominated after 
intermediate or even early times by tke pressure-driven flow in the film which sets the adjoin- 
ing fluid into identical motion. Different initial velocity fields, for example, giving rise to 
momentum interchange between phases have an effect, but one which eventually dies out 
relative to the pressure contribution. It is at first surprising that the pressure force in the 
film is so effective in the adjoining phases, there being no attenuation whatsoever: the film 
eventually moves as a rigid body and so does the fluid on either side. Although the amount 
of B-phase fluid so set in motion must grow in time, it evidently reaches a stage beyond 
which growth is slow relative to the large mass of fluid already set into effectively rigid-body 
motion and consequently in which there is no further appreciable retardation of motion. 
The "ground-state" for long-time motion is not uo, but the arithmetic mean of the initial 
motion in the B-phases. The motion in all three phases grows inexorably in time due to the 
momentum source k, but it does so at an ever decreasing rate. 

,A (t ~ OO) is only a slowly-varying function of time, Because the long-time asymptote r, 
it is natural to attempt a comparison with the steady solutions associated with the decoupling 
boundaries of earlier, simpler models. They provide for parabolic velocity profiles in the 
film if either or both interfaces are "rigid", and if both are "free" the model leads to an 
infinite velocity prediction. Moreover, decoupled models do not provide for motion in the 
contiguous phase(s) (or if there were, it would be independent of motion in the film). In 
contrast, coupled motions are of the essence in real systems and in the present model, two 
prominent features of which are the "velocity defects" between film and contiguous phases 
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leading to momentum interchange and momentum increase in contiguous phases due to 
pressure-driven flow in the film. The latter become ever more effective with elapse of time, 
as mentioned above, and eventually move all three phases effectively as a single solid body. 
The former can be dominant early in drainage, and it can happen that initially the more 
rapid film flow can transport momentum to the other phases before pressure forces become 
significant; should drop or homophase circulation be initially greater, then film motion is 
correspondingly enhanced and coalescence consequently hastened. Provided that appre- 
ciable dimpling does not occur or that instability which can lead to film rupture (coal- 
escence) does not occur, pressure forces ultimately dominate flow in all three phases, whereas 
they are quickly balanced by viscous forces for two rigid planes bounding the film---al- 
though the initial motions in the three phases can survive and influence motion in the film 
for intermediate times. 

The case R = 1.01 was selected for calculations on physical grounds, for a system having 
equal dynamic viscosities is important as a basic system, yet there must be a density dif- 
ference to effect drainage. Moreover, if R is identically unity, no series expansion is required 
to invert the ancillary expressions for the velocity fields, which are then 

fiA = -- ( ~ - ~ )  [e-qal3-zI-s + e--qAz] + ~ +s u° + 21[vl°e-qA{6-zl 1)20e--qAz] [32] 

uB~ = s - 2 s s 

- - v ° e  ] t - r ° .  [34] ~ ~ - ] -  

un2 s 2 s s 

The inverse transformations are then readily performed (Abramowitz & Stegun 1968) to 
give 

2 (~ - - Z  -7 Var =kt{1-2i  e r f c ( ~ ) - 2 / 2 e r f c ( ~ ) }  

~ - - Z  Z 

v ~ = k t { 2 ' e r f c ( ~ )  -2i2erfc (4~vA,)i~ } 

Uo-V~o [ z - ~  \ v2-Uo (z-6)+ 
+ ~ e r f c / ~  ) + ~ - - -  erfc ~VAI 1 [36] 

(4vnt) 1/2 , + Vo, 

• 2 - z ~ va! v]2=kt{21 e r f c ( ~ )  -2i2erfc ~@72 ~ } 
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t ( ) 1 I lg o - -  V 2 - -  Z 
+ vo - u o ~vAI + T erfc + 2 [37] - T erfc (4v~t)t/2 ~ Vo. 

In this simple but practically significant special case, motion is dominated for long times 
by the pressure-driven film drainage. Appropriate asymptotic formulae for small arguments 
(Abramowitz & Stegun 1968) can be used to get the long-time asymptotes, for neither here 
nor in the general formulae can one obtain the correct answer by simply setting t = oc,: 

, 2 v'o(6 z ) + v : o z  ,/2 Uo6 1/2  U O Jr D O -- 
A _  k6 t 1/2 Jr t -  + t -  E38] 

limoo vr (rtVa) 1/2 2(aVa) 1/z 2 2(rtVA) 1/z ' 

1 2 
1to6 - 1/2 Do -~ Uo _ k6 t l /2 + + _  

{i~m~o v'm (~vA) 1/2 2(~A) 1/2t 2 

1 I 1 IV ~1/2 -] 
+ 2(~v~)i/2 V2o)(Z - 6 ) -  2 [39] 

1 2 
B k6 t l /2 u°6 t -  1/2 Vo + Vo lim v ,  - + + - -  

,~oo (rCVa) 1/2 2(nva) 1/2 2 

i /v ~/2 q 1 1[ B / 6 / , _ 1 / 2  
+ 2(/tVs) 1/2 (vl -- V2°)Z -- V° ~Val d " [40] 

As expected intuitively, the initial conditions play a prominent role for short times. 
Analogous calculations, this time using formulae corresponding to large arguments, yield 

i m  va = kt  1--~-]T2(Vat)/LTgexp/--4-~At +(5- -z )  ~ x e x p  4VAt ] 

+ ~T/2 ( v2 -- Uo)(Vat) 1/2 exp -- + Uo, [41] 

4kt  3/2 ( 1 exp( ., (z-_a) 2) 1 
{ imv,  = ~-~2 (vst) l ( z  6) 3 4v,t , 

 exp( I 
1 (V:o - Uo) (v"t)l/2 

+Tm (z_a)+ (v.ll/2a 
~VAI 

[(z- 6)+ (L"/'/26] 3 
\ vM d 

l(u (v.t) 1/2 ( (z--6)2/ ,, 
+ ~  o - v a ) ~ e x p  4vet ] + r  o 

I v \1/2 ~2,~ l:j 
exp 4v~ - / '  [42] 
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{imv~ ~4kt ((_~)a -zZ 1 ( 

1 V o -- U o (vBt) 1/2 

+ n l /2  vB ~ - -  z 

~VA/ 

4~BB ~ 

4VBt 

-- 2(Vet)l~2 [ z2 I ,z 
u° v° exp -- + v o. [43] /[.1/2 Z 14v.t] 

4. DISCUSSION OF RESULTS 

The exact solutions being difficult to interpret and the asymptotic forms being necessarily 
approximate, some summations of the series solutions are discussed in this section. The 
instantaneous vertical dependence of a typical, radially outward flow in the film and 
adjacent phases is depicted schematically in figure 1. Because of axial symmetry, subsequent 
figures show the evaluation of profiles in a single axial plane, with the reader cautioned that 
the independent variable ( has been measured in units of 5 within the film but in units of 
3(VB/VA) 1/2 outside the film in order to avoid introduction of an additional parameter. 

Also by way of prefatory remarks, we note that the kinematic viscosity enters the equa- 
tions of motion whereas the dynamic viscosity enters the boundary conditions. For the 
rectilinear motion considered here, the physical parameters appearing in the solutions for 

Z 

Figure 1. Schematic representation of an instantaneous velocity profile. 
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the velocity fields are consequently VA, vB and R = (/~APA/#BpB) 1/2. If the fluids are of 
comparable density, then R ,~ (pA/#B) 1/2. Hence, in the sequel we shall speak of films being 
more viscous than their contiguous phases--or simply, more viscous--when the more 
precise but physically less suggestive statement that R > 1 applies; similar remarks hold 
for the cases R ~ 1, R < 1. This lack of precision is not without its pitfalls, but it has the 
clear advantage of intuitive appeal. 

The range of values of R for real systems is extremely wide. The values R = 10, 0.1 are 
reciprocals, they represent a range of two full orders of magnitude, and they are adjudged 
reasonable bounds to demonstrate the effect of small and large R. The value 1.01 was 
selected as representing a system of equal viscosities yet having the requisite, but only slightly 
different, densities. For want of space, however, not all the results that are discussed have been 
presented, but a number of interesting situations for short-time behavior and interactions 
of several fields are explicitly explored. 

Development of velocity profiles during later stages of drainage 

It was demonstrated analytically that in the long-time limit film motion due to the 
pressure gradient eventually dominates initial flow fields in all phases and sets large--and 
ever larger--quantities of fluid on each side of the film into motion. An estimate of the time 
required to achieve the asymptotic flow conditions, as well as a feel for the approach to the 
asymptote, can be gotten from figures 2-4, where uniform initial conditions have been 
supposed and velocity profiles measured from the initial one are plotted against time for 
several values of R (viz., films much more, much less, and comparably viscous). The cor- 
responding asymptotic results are shown as dashed curves. If the fluids are of comparable 
viscosity, as well as density (figure 2), the profiles evolve in a not unexpected manner; in 
particular, for short times film flow appears almost parabolic, although that tendency is 

Log T= 0 

- ;  

- 5  

- 4  

F i g u r e  2. 

R = 1.01 

l J 
4 5 
Log U/K 
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- 2  

_ 4  L -  

Figure 3. 

i 

tog  
U / K  

immediately and continuously offset by momentum transported across the interfaces. The 
more viscous the film is relative to the other phase (figure 3), the more it tends to move  as a 
rigid body from the outset, inasmuch as the contiguous phases are more easily set in motion. 
For the converse case of a less viscous film (figure 4), the film is more readily set into motion, 

5 
4 = 6 I0 

R=O.I  

3 

2 

I 

tog U/K 

- 2 - -  

-3- -  / 

-4  

Figure 4. 

Figures 2 4 (taken together). Effect of physical properties on the development of velocity profiles 
measured from a uniform initial velocity. U = (v ,  - v ° )~ /v~;  K = k,53/v~;  T = ~2 /vA .  
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Figure 5. 

and  in fact the shor ter  the t ime and the more  viscous the con t iguous  phases,  the more  

pa rabo l i c  is the veloci ty profi le  in the film. 

In add i t i on  to the above  purposes ,  figures 2 - 4  can be used to in terpret  systems having 

ini t ial ly non-un i fo rm mot ion  after in te rmedia te  t imes when most  of these initial  t ransients  

have d ied  out  (cf. especial ly figures 5-9).  

4 

R*O.I 

3 K~I  

2 

0.5 
S ~ )I0 

4 

Figure 6. 

Figures 5 and 6. Effect of physical properties on the development of velocity profiles for non- 
uniform initial velocities. U = v,6/v4;  K = k f a / v ~ ;  T = c52/vA; Uo a = 0.1; Uo B = -0.05. 
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Figure 7. Reversal  of  inward film drainage.  Uo A = - 0 . 5 ;  Uo n = O. 
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Drainage in systems having films less viscous than adjacent phases 

For an initially quiescent system the pressure gradient enters the velocity expressions 
for all three regions [23]-[25] as a constant, multiplicative factor, as indeed it does if initial 
motion is only uniform. If the film is much less viscous than the drop and its homophase, 
the velocity profile within the film has a somewhat parabolic appearance at any instant 
of time, an effect the more pronounced the shorter the time (figure 4). Unfortunately for 
even this tenuous comparison with static profiles in films decoupled from their surroundings 
by unrealistic boundary conditions, however, the film velocity neither remains constant nor 
does it vanish at the bounding surfaces. 

For moderately asymmetric initial conditions, an instantaneously parabolically shaped 
film profile can occur for intermediate times long enough that the asymmetry has been 
overcome but short enough that the contiguous phases have not yet begun to overtake the 
film motion. A reduction of the pressure gradient by an order of magnitude permits more 
interaction of the initial profiles due to diffusion, and the initial conditions dominate until 
longer times. 

If the initial motion in the drop and its homophase is the same, regardless of that in the 
film, a symmetric profile necessarily occurs, at least in the absence of hydrodynamic 
instabilities. For the less viscous film initially flowing outward but counteracted by motion 
in the other two regions that is oppositely directed and an order of magnitude smaller, a 
dimensionless pressure gradient of order unity is at first barely able to maintain outflow. 
A thin disk of outflow eventually thickens and expands due to pressure forces, but only 
after it had perceptibly thinned because momentum diffused more quickly from the film 
than it could be restored by the pressure-gradient source. 

The implication for coalescence hydrodynamics, in agreement with intuition and 
experimental observations (Hartland 1970, 1960) is that reverse flow in the drop could 
initially lead to thickening of the film. In addition to the quantification of a plausible notion, 
one sees a larger quantitative proposition, namely, that large disparities between outward 
film motion and drop and homophase motion can cause dramatic deceleration of film 
motion and, if the latter were inward, even reversal of film flow. The larger the pressure 
gradient, the less momentum diffuses from the film before it and its surroundings have been 
set in motion. The weight of the drop effects film flow through the pressure gradient set up 
in the film, and this of course subsequently overcomes the thickening tendency. 

If the film flow inward is due to an abnormal pressure gradient and both are ultimately 
reversed by gravitational forces, such cases may be modelled by presuming null flow initially 
in drop and homophase with negative flow initially in the film. The flow reversal and 
accomplishment of normal drainage is inevitably associated with serpentine profiles (shown 
for R = 1.01 in figure 7), with momentum diffusion for short times dominating pressure 
effects and with pressure forces dominating the central portion of the film more easily than 
the layers near the interface, a combination of effects the more pronounced within the film 
the smaller is R. The asymptotic approach of R ~ 0 recovers results reported elsewhere 
(Riolo, Reed & Hartland 1973). 
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Drainage in systems having .films more viscous than adjacent phases 

If the film is much more viscous than its neighboring phases, its velocity profile tends to 
be flatter, its motion tends to be dominant, and steeper velocity profiles occur in the 
adjacent phases. Thus, because it is more viscous it moves more like a solid, and small 
velocity gradients can nevertheless transmit momentum to the surroundings at a significant 
rate. Too, the surroundings are more easily sheared (figures 3 and 5). 

The reversal of inward film flow in a more viscous film also manifests serpentine profiles 
but with their distortions, or curvature, less within the film, greater outside. The developing 
oscillatory boundary layer for larger R is a more pronounced analog of that on an oscillating 
flat plate just set into motion than that for smaller R because the film is more viscous rel~ative 
to surroundings. A reduction in pressure permits greater instantaneous equilibration of 
film and surroundings. The interaction of pressure forces with nonuniform initial conditions 
more generally is such that a reduction in the pressure gradient permits more momentum to 
diffuse to or from the surroundings before the film further accelerates outward, an observa- 
tion having wider validity. 

Drainage in systems having,films and adjacent phases q( comparable viscosities 

The range 0.1 < R _< 10 scarcely brackets the variety of physical systems occurring in 
industrial practice and fundamentai research, nor do the cases considered above exhaust 
the situations and phenomena occurring in drainage hydrodynamics for even these systems. 
It is therefore all the more desirable to select a base system and attempt a more complete 
compilation. The base system that suggests itself directly is that of comparable viscosities, 
and the base case would be an initially quiescent system subjected to a dimensionless 
pressure gradient of unity, shown as the special case K = 1 in figure 2. As symmetric, and 
therefore uniform, initial conditions are mapped by the differential equations into symmetric 
solutions (independently of R) when both adjacent phases begin with the same motion 
(figure 7), the behavior soon looks like that for uniform initial motion (figure 2), regardless 
of the magnitude and sign of the initial difference in uo and vo ~ = v~. It is only a matter of 
initial transients being different and taking longer to die out the smaller the pressure gradient 
is and the larger the initial velocity difference is. The quantitative features of the early 
transients are certainly distinct, but there is nothing to qualitatively distinguish them, with 
the exception that for asymptotically small and vanishing pressure gradients the diffusion 
limit is recovered (see figures 8-11). 

If the initial conditions are asymmetric with the drop initially moving faster than the film 
(figures 8-11), the drop profiles manifest oscillatory boundary layer development, and the 
film profiles have pronounced points of inflection, except in the limit of vanishing pressure 
gradients, where the initial value problem for pure diffusion is recovered (figure 11). The 
weaker the pressure forces, the more momentum is interchanged by diffusion between 
drop and f i lm--and hence between film and homophase--before pressure begins to effect 
drainage (cf. figures 9 and 10) and the better the drop and homophase motions are able to 
equilibrate to the pressure-driven film motion. For greater pressure forces, there is less 
momentum interchanged before drainage occurs, and certainly none across the film to the 
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Figures8 11. Effect ofpressure on the development ofvelocity profiles for outward drop circulation 
initially. Uo a = Uo B2 = O; Uo n' = 0.5. 
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Figure  13. Uo B' = - 0 . 1 .  

F igures  12 and 13. Effect of ini t ia l ly  inwards  c i rcula t ion  in the d rop  on the deve lopmen t  of velocity 
profiles. Uo a = Uo B2 = 0. 

homophase (cf. figures 8 and 9). Except for very short times, the profiles generated when 
there is no initial film motion differ little from those when there is film motion, provided 
the drop motion is greater. 

The preceding cases were important for the practical reason that they quantify intuition 
concerning the role that normal circulation within the drop plays in enhancing drainage 
of the film. Reverse circulation has an equally significant effect, for then the pressure 
gradient must act to overcome inward motion in the film set up by the initial (negative) 
velocity difference. This effect is heightened with decreased pressure gradients, as would be 
expected, although any tendency toward thickening of the film due to influx of the fluid is 
finally overcome by pressure forces with further elapse of time. The pattern of motion is 
shown in figures 12 and 13 for different rates of reverse drop circulation. 

If the initial reverse motion is in the film and there is comparable but oppositely directed 
initial motion in the drop, asymmetric profiles result, in which familiar transients for short 
times appear and for which the diffusive contribution outweighs pressure forces the weaker 
the latter become. Ultimately--except for truly miniscule pressure ef fec ts l the  profiles 
take on forms in which initial conditions are virtually erased. In the limit of miniscule 
pressure gradients, pure diffusion profiles are recovered. 

Reverse drop circulation having brought about inward flow in the film, it is of practical 
interest to know how the pressure gradient reverses the motion and brings about drainage. 
A result in this direction is shown for plausible initial conditions in figure 7. The profiles 
within the film and in the adjacent phases have already been mentioned, but the hydro- 
dynamic interaction of the phases across their common interfaces during the period of flow 
reversal is of fluid mechanical interest, as well as practical importance. The flow in the drop 
bears a strong resemblance to that in the boundary layer developing on a flat plate that has 
just been set into oscillatory motion parallel to itself. The inwardly directed film flow initiates 
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reverse circulation in the drop at the expense of inward flow at the boundary regions of the 
film. The flatter profile in the interior of the film offers less viscous resistance to tendencies 
of outward flow in response to the pressure gradient. The interior of the film can thus over- 
take the exterior of the film, with resultant serpentine profiles in the film (emphasized by 
the enlarged velocity scale and reduced vertical scale selected in the insert to figure 7 but 
also visible on the original scale). At the same time that a reverse circulation is penetrating 
into the interior of the drop and its homophase from the initially inward film flow, the 
newly initiated film outflow reverses that tendency in the immediate neighborhood of the 
interfaces. The resulting profiles outside the film have the appearance of boundary layers 
developing during the initial period of oscillation of a fiat plate parallel to itself, a recurrent 
theme in all cases of film flow reversal. Similarly, inflection points and more general 
serpentine profiles within the film recur under other similar circumstances of flow reversal. 

5. CONCLUSIONS 

The drainage of thin films that are hydrodynamically coupled with their adjacent phases 
differs completely from drainage between immobile boundaries. The flow depends upon 
the pressure gradient driving the film flow--and hence also flow in contiguous phases--and 
upon the initial conditions in all three phases. The flow in the three phases also depends 
strongly upon their physical properties in the form of (vs/vA) 1/2, the kinematic viscosity 
ratio, and R = (pAllA/pBllB) 1/2 = (I..LA/J2B)(YB/YA) 1/2, a dimensionless parameter characteriz- 
ing the ratios of two kinds of momentum transport in the two phases, on the one hand at 
the boundary between the two phases, and on the other in the interiors of the two phases. 

Several properties can be inferred from the exact solution, ranging from symmetry con- 
ditions to physical interpretations of individual terms (Section 2). Other analytical informa- 
tion can be extracted from asymptotic forms of the solutions (Section 3). In particular, for 
short to intermediate times the flow disparities in the three regions determine the flow 
profiles, but for longer times the pressure gradient completely dominates flow in all three 
phases. A steady asymptotic form is not attained, regardless of the time. 

The role of physical properties is more pronounced, the shorter the time; the meaning of 
R and its effect on the velocity profiles can hence best be seen for short times. A proper yet 
simple comparison of different systems that also elucidates R is as follows. Consider a given 
film having distinct surroundings in the two cases, yet with kinematic viscosities the same 
in both phases in both cases and with pressure forces and initial velocity differences the 
same in both cases. IfR is small, the film may be described as less viscous than its surround- 
ings. It is therefore more easily set into motion, whereas its surroundings remain relatively 
quiescent until the steepening velocity profiles within the film begin transferring more 
momentum to them. Conversely, if R is large, the film is the more viscous, the surroundings 
more easily sheared, and the film sets off almost as a rigid body. For comparably viscous 
systems, however, the surroundings begin to receive momentum almost immediately 
because they offer immediate resistance that leads to early velocity gradients within the 
film. Moreover, the smaller the pressure gradient and the larger the initial flow disparities, 
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the more is diffusional interaction responsible for the development of velocity profiles 
during the early stages of drainage, with R modulating the dimensionless profiles. 

The fgregoing conclusions based on analytical but asymptotic arguments are reinforced 
and quantified by summation of the series solutions (Section 4). Quite unusual velocity 
profiles can occur due to drop circulation or reverse film flow, for instance, for the physical 
complexity of drainage in three-phase systems is faithfully mirrored to that extent in the 
mathematical complexity of the analytical solutions. The numerically generated profiles 
can also help to extend and refine intuition developed from the asymptotic formulae and 
presented as conclusions above, provided proper computational care is exercised. 

The convergence criterion for the subroutine calculation of each mathematical function 
in the series can cause problems with the convergence, or more accurately, with the accuracy, 
of the summation of the series itself, although there is no fundamental difficulty. Certain 
situations are, however, awkward in principle as well as in calculation. For example, for 
short times the R ~ 0 limit may be computed directly from the formulae, but for longer 
times computation becomes increasingly, difficult until, at R = 0, round-off errors cause 
failure unless the series is first manipulated into another form (cf. Riolo, Reed & Hartland 
1973). The physical basis of this difficulty is readily understood, for there is very little 
penetration of motion into the adjacent phases for sufficiently small R and short times, even 
for large pressure gradients; but so long as R is not identically zero there must eventually 
be motion in the surroundings in consequence of that in the film. 

In a companion paper the implications for film-thinning of such microflow situations 
as have been described here will be analyzed. 
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Sommaire--L'effet d'accouplement hydrodynamique de phases adjacentes sur le drainage de 
pellicules minces est examin6 h l'aide d'un mod61e prototype de coalescence. Pur de longues 
p6riodes les forces de pression dans la pellicule dominent l'6coulement dans les trois r6gions, et 
finalement elles se meuvent toutes effectivement comme une seule tandis que pour les courtes 
p6riodes, les profils sont aigiis et les diff6rences initiales d'6coulement dans les trois r6gions peuvent 
dominer les effets de pression. Pour les dur6es interm6diaires, l'6volution temporelle des profils de 
v61ocit6 d6pend de faqon compliqu6e du rapport de viscosit6 cin6matique et du param6tre 
R = (pa,u/j/ps,ua} 1:2, ainsi que des conditions initiales et du gradient de pression. De fa~on g~n~rale, 
les 6coulements initiaux ont moins d'effet sur le temps total de drainage que la pr6sence de circula- 
tion induite dans les phases adjacentes. Des solutions analytiques sont relev6es pour une gamme de 
syst+mes, des conditions initiales repr6sentatives, et des gradients de pression. Dans un article 
suivant, des 6quations d'amincissement de pellicule sont r6solues ~t l'aide de ces renseignements. 

Auszug--Es wird die Wirkung hydrodynamischer Kopplung von anliegenden Phasen auf die 
achsensymmetrische Abfliessen des Filmes dfinner Filme mittels eines Prototyps eines Koaleszenz- 
modells untersucht. Ffir lange Zeit beherrschen Druckkr/ifte in dem Film den FluB in allen drei 
Bereichen und dann gehen alle praktisch in einen einzelnen fiber, w/ihrend fiir kurze Zeit Profile 
scharf ausgepr/igt sind, und anf'~ingliche Str6mungsunterschiede in den drei Bereichen k6nnen 
Druckwirkungen beherrschen. Ffir Zwischenzeiten h~ingt die zeitliche Evolution der Geschwindig- 
keitsprofile in einer komplizierten Weise von dem VerhPdtnis der kinematischen Viskosit/it und dem 
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Paramete r  R = (pA#A/pB~tn) 1'2 sowie von den anf'~inglichen Bedingungen  und dem Druckgef'~ille 
ab. Im a l lgemeinen  haben  die anf'finglichen Flfisse eine ger ingere  W i r k u n g  auf  gesamte  Abflusszeit  
als das  Vorhandense in  von induzier te r  Z i rku l a t i on  in an l iegenden  Phasen.  Es werden ana ly t i sche  

L6sungen  for e inen Bereich von Sys temen und kennze ichnende  Anfangsbed ingungen  und Druck-  

gef:,ille d i ag rammat i s ch  dargestel l t .  In e inem darauf fo lgenden  Bericht  werden F i l m a b n a h m e -  

g le ichungen au f  G r u n d  dieser In fo rma t ion  gel/3st. 

PeMoMe --- FIpH nOMO!J~14 flpOTOTHHa MOmenta  Koa.aectleHum~ ncc.~e~yJo ~ 3~])eKT 
FH~Ipoz2HHaMHqeCKOFO B3ar~MO~eI~cTBH~t coce~HHX qba3 Ha oceCHMMeTpHqHOe CSO60~rlHOe cxeKaHHe 

TOHKFIX H.rleHOK. B .~flMTeflbHble IIepHo~,bl BpeMeHti, CH:1a 21aB~eH14a B H.~eHKe ROMHttHpyeT Hail 
PIOTOKOM BO Bcex Tpex o6~aCT~IX, rio B KoHue KOHIJ[OB Bce  Ddl)gl3eKTHBriO iiepeMeiJ_taioTCS KaI< e~i4rioe 

LteJIoe, B TO BpeM,q KaIc B KOpOTKrIe I1pOMe3KyTKtt BpeMeriri iqppdptl~H pe3Krie rf pa3HOCTrI ~CXO~HOFO 

TeqeHtI~ 80 Bcex o6~aCTSX MOFyT IIOBJIFIflTb Ha ,~aBJIeHrle. B npoMe~yTOqHOe BpeM~, nepexo~amee  

pa3BHTHe npoqbH:~efi cKopOCTH 3aBMCHT OT GYIO)KHblX (])aKTOB--OT CTelleHrl K~IHeMaTHqeCKO.q 

B~I3KOCTH !4 napaMexpa R = (pA,UA/PB~B) 1/2, xaK)~e KaK I 4 0 T  klCXOJ1HBIX yC~aOBHfi n rpanHeu~a 

~jaB:leHria. KaK npaBn:lo, ncxo~lnble HOTOKH MeHbtue 8~HarOT Ha BpeMg o 6 m e r o  CBO60~IHOFO 

cTeKaHrt~l, qeM npncyTcTsrie uu~lyt~upo~aHHofi ar ipKynslmn ~ coce3Hefi ~0a3e. Fl :mtmpyror  

aHaJmTnqec~ne pemeHns ,a~s p ~ a  CHCTeM. rloKa3aTeJlbHble H~XO3Hble yCYlOBH~I H rpa,aneH3bt 

AaB~qeH~. B cnexyroLuefi CTaTbe pemato 'r  ypasHeriHg pa3a<nx~erms H.rleHKH Hpn nOMOLUH 3~Ofi 

m~c~opMaunH. 


